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Abstract A Constraint Satisfaction Problem (CSP) can be stated as
follows: we are given a set of variables, a finite and discrete domain for
each variable, and a set of constraints defined over the values that each
variable can simultaneously take. The objective is to find a consistent
assignment of values to variables in such a way that all constraints are
satisfied. To do this, a deterministic algorithm can be used. However,
the order in which the variables are considered in the search process
has a direct impact in the efficiency of the algorithm. Various heuristics
have been proposed to determine a convenient order, which are usually
divided in two types: static and dynamic. This investigation in particular
uses Genetic Algorithms as a heuristic to determine the dynamic variable
ordering during the search. The GA is coupled with a conventional CSP
solving method. Results show that the approach is efficient when tested
with a wide range of randomly generated problems.

1 Introduction

A Constraint Satisfaction Problem [1] (CSP) is composed of a finite set of vari-
ables, a discrete and finite domain of values for each variable, and a set of
constraints specifying the combinations of values that are acceptable. The aim
is to find a consistent assignment of values to variables in such a way that all
constraints are satisfied, or to show that a consistent assignment does not exist.
Several deterministic methods exist in the literature to carry out this process
[2,1], and solutions are found by searching systematically through the possible
assignments to variables, usually guided by heuristics. Many investigations have
shown that the order in which the variables are considered for instantiation in
the search has a direct impact in its efficiency [3]. There is a wide range of prac-
tical problems that can be modeled as CSPs. Applications of the standard form
of the problem have included theorem proving, graph coloring and timetabling,
machine vision, and job-shop scheduling [1]. Various heuristics have been pro-
posed in the literature to determine an appropriate variable ordering, which can
be classified in two types: static and dynamic. The heuristics of Static Variable
Ordering (SVO) generate an order before the search begins, and it is not changed
thereafter. In the heuristics of Dynamic Variable Ordering (DVO), the order in
which the next variable to be considered at any point depends on the current
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state of the search. It has been observed that heuristics for DVO outperform
those heuristics for SVO [4,3]. This article presents an investigation which uses
a Genetic Algorithm (GA) [5] as a dynamic heuristic to determine the appropri-
ate variable ordering during the search. The GA is used with a Forward Checking
algorithm (FC) and in this scheme the FC algorithm calls the GA which decides
the next variable (one or more) to be instantiated. Results of this approach are
compared against three other heuristics that have been widely used in similar
studies and have provided reasonable performance for a variety of problems.

The reminder of this article is organized as follows. The next section describes
the proposed solution model. Section 3 presents the results obtained and their
discussion when the model is tested over different instances of CSPs. Finally, in
Section 4 the conclusions are included.

2 Methodology

This report presents a combination of aspects of Constraint Satisfaction and
Evolutionary Computation. This association has been used before. For instance,
recent work by Craenen et al. [6] presents a comparative study on the perfor-
mance of different evolutionary algorithms for solving CSPs. Research by Eiben
[7] also discusses a methodology and directions for developing hybrid approaches
with both techniques. The work presented in this paper, however, establishes the
connection in a different way by concentrating on the problem of dynamic vari-
able ordering when solving constraint satisfaction problems.

We herein describe a model to define the instances of CSP problems used
in this work; they are binary CSPs (problems in which the constraints involve
only two variables) defined by a four-tuple 〈n, d, p1, p2〉, where n is the number
of variables, d is the domain associated with each variable (for this investigation
it is the same for all variables), p1 is the probability that there is a constraint
between a pair of variables, and p2 the probability that, given that there is a con-
straint between two variables, the pair of values is inconsistent. This means that
p1 and p2 represent an approximation of constraints in the problem (constraint
density) and a number of inconsistent pairs of values (constraint tightness), re-
spectively. A problem of this kind will have p1

n(n−1)
2 constraints, and p2d

2 over
each constraint. The same model has been used in other similar studies [8,9,10].

As a basis for comparison, this work uses several variable ordering heuristics
that have been previously studied. These algorithms are based on the principle
of selecting the ‘most constrained variable’; the heuristics attempt to fail as soon
as possible when instantiating variables, what leads to reinstantiate the variables
with other values, and so eliminate search subregions of considerable size. These
heuristics are the following:
Brelaz. This heuristic was designed for solving graph coloring problems. For a
partial coloring, the saturation degree of a vertex is the number of different colors
used to color the adjacent vertices. For our problem, the heuristic selects first
the variable with maximum saturation degree (the variable with fewer values in
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its domain). Then, it breaks ties by selecting the variable with maximum degree
(the degree for a variable is the number of adjacent uninstantiated variables).
Rho. This heuristic selects first the variable that maximizes equation ρ =∏

c∈C−Ci
(1 − pc). That is, the variable that minimizes

∏
c∈Ci

(1 − pc), where
C is the set of constraints in the problem, Ci is the set of incident constraints
in the current variable Vi and if a constraint c in average limits a fraction pc

of possible assignments, a fraction 1 − pc is allowed. Thus this heuristic selects
first the variable with the most and/or tightest constraints. The idea behind it
is that by selecting this variable, the remaining subproblem contains a larger
number of solutions (solution density ρ). The heuristic, however, does not take
into account the available domain of the variables.
Kappa. This heuristic selects the variable in such a way that the parameter
κ is minimized, where κ is a measure over the subproblem left after extracting

the variable Vi and is given by the following equation: κ =
−

∑
c∈C

log2(1−pc)∑
v∈V

log2(dv)

where V is the set of variables in the problem, and dv is the domain size of
variable v. This heuristic depends on the proposal by Gent et al. [11] in which
κ captures the notion of the constrainedness of an ensemble of problems. The
problems with κ � 1 are likely to be under-constrained, and solvable, whereas if
κ � 1, these problems are likely to be over-constrained and unsolvable. Similarly
as the heuristic Rho, this heuristic intends to select a variable that will leave a
subproblem with high probability of being solvable.

More formal description of each heuristic can be found in the work by Gent
et al. [12].

2.1 Solution Approach

The method for solving the CSPs in this work is the Forward Checking (FC)
algorithm. FC takes a variable from the uninstantiated ones, sets a value for
it, and propagates constraints (it keeps consistency in the domains of the adja-
cent and remaining variables). If one of those variables finishes with an empty
domain, then the algorithm chronologically backtracks (BT), otherwise it con-
tinues with the next variable. This algorithm was chosen because it provides
updated information in relation to the unsolved subproblem in each iteration.
This information is in fact used by the heuristics to determine the next variable
to instantiate. In our hybrid approach, the FC algorithm invokes the GA which
runs for a number of cycles and determines the variable (it may be one or more)
to be instantiated. Figure 1 illustrates the implementation diagram.

The variable(s) to be instantiated by the FC algorithm are taken from the
best individual in the last cycle of the GA, every time this is called. The se-
lected variables are those placed to the left-most part of the chromosome (a
permutation-based representation is used) where each gene represents the index
of each uninstantiated variable. n is the number of variables in the chromosome.

When the FC algorithm starts solving a given instance of CSP, it calls the
GA, which initializes the population (popsize is 15n) with randomly generated
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Figure 1. Flowchart of the proposed approach.

Table 1. Control parameters for the GA.

Parameter Initial Following
Population 15n 10n

Cycles 12n 8n

Replacement 60% 60%
Crossover Probability 90% 90%
Mutation Probability 10% 10%

chromosomes, runs for 12n cycles, and returns the selected variables for instan-
tiation (step). FC is then used to assign values to step variables (the ones on
the left), so there will be n− step left to assign. For the subsequent invocations,
the population in the GA is initialized based on the best chromosome of the
previous call (we call it base chromosome and it is the one used to select the
step variables). Now, the new population of size 10(n − step) is created, which
is run for 8(n − step) cycles. The chromosome used to generate the new popu-
lation is modified using random alterations. A copy of the base chromosome is
also inserted in the population. The process continues until the complete CSP
has been solved. The type of the proposed GA is steady state, with tournament
selection, PMX crossover, and swap mutation. The GA was empirically tunned
in its parameters and the final parameter set is presented in Table 1.

The objective function in the GA is given by the following expression:
Ev = S1 + nS2 where S1 =

∑step
i=1

Ti

Ai(Di)2
Dmax

2(n − i)2 and

S2 =
∑n

j=step+1 Dj

(
j
n

)2
being n the number of variables remaining to be in-

stantiated, step the number of variables the GA returns to the FC algorithm
to be instantiated, Di the size of the current available domain for variable Vi,
Dmax is the largest domain associated to a variable, Ai is the number of adjacent
variables to variable Vi and Ti =

∑n
j=step+1

confi,j

DiDj
where confi,j is the number

of pairs in conflict between the current available values for variables Vi and Vj .
The best individual is the one that maximizes the objective function above.

This fitness function combines ideas from both the Brelaz and Kappa heuristics,
specifically, with S1 we are looking for those variables with small available do-
main and at the same time with constraints with high degree (with Ti

Ai
), while
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S2 is used to emphasize that variables with small available domain should be se-
lected first (shifted to the left side). From this expression, it can be observed that
for smaller domains of the involved variables the value on S1 would increase. It
is also beneficial to have those variables to the left of the chromosome, and this
is achieved by introducing the factor (n− i)2. The value that makes a difference
between two or more variables with the same minimal domain is Ti which is a
sum of the tightness for each uninstantiated variable and adjacent to variable
Vi. The quotient of Ti divided by Ai in S1 would give us an idea of how ’hard’ in
average are the constraints linking Vi with the rest of the variables, considering
only their available values. S2 gives preference to select first those variables with
smaller domain. This effect is achieved by maximizing the sum of the available
domains of the remaining variables. Taking advantage on this, we also consider
shifting variables with smaller available domains to the first positions in the
chromosome. We give a weight to each position with (j/n)2. It is also important
to stress that when the FC algorithm is combined with heuristics Rho, Kappa,
or Bz, just a single variable is returned for instantiation, that is, parameter step
is only applies for the FC-GA combination.

3 Experiments and Results

This section presents the most important results obtained by the proposed ap-
proach. The experiments are divided following two different ways for generating
the instances: in the first one, the generated problem instances have the param-
eter p2 constant, that is, all constraints have the same number of inconsistent
pairs; while in the second one, this parameter is randomly varied, leaving dif-
ferent number of inconsistent pairs between constrained variables. This way of
generating the instances allows to observe the behavior of the various heuristics
when the parameters used to define an instance are not uniform. For both cases,
the performance of the algorithms is based on the number of consistency checks
performed by the FC algorithm, with the aim to minimize it. The number of
consistency checks is the most common way of comparing algorithms of this kind
when solving constraint satisfaction problems, but there exist two other usual
criteria such as the number of expanded nodes in the search tree and the number
of backtracks. In the case of the GA, results report the average and best result
over ten runs of the same instance.

Problem instances with uniform p2

We present results for instances with 10 and 20 variables and domain size of
10. For both sizes, three different experiments are carried out, each one with a
different value for parameter p1 (constraint density).

First, we report results for instances with 10 variables. 40 random instances
were generated for each value of p2, the FC algorithm is executed with each
heuristic and each instance, and then the average number of consistency checks
is computed. That is the number plotted in the figures. For the GA case, each
instance is run 10 times and then their average is used to obtain the average
over the 40 instances, which is the one reported in the figures. p2 is increased

Genetic Algorithms for Dynamic Variable Ordering in Constraint Satisfaction Problems        39



0

500

1000

1500

2000

2500

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mean
checks

����������

�

�

�
�

�
�

�
�
�

�
�
�
����

�
����

�
��������

++++++++++
+

+

+
+
+

+

+
+
+
+
++
++
++
++++++++++++++

(a) p1 = 0.75, step = 1
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(b) p1 = 0.75, step = 2
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(c) p1 = 1.0, step = 1

0

1000

2000

3000

4000

5000

6000

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ka

�������
�

�

�
�

�

�

�
�
�
�
�����������������������

�

Bz

++++++
++
+

++
+

+

+
+
+
++++++++++++++++++++++++

+
Rho

AG best
AG avr

(d) p1 = 1.0, step = 2

Figure 2. Result on problems 〈10, 10〉 with uniform p2.

from 0.2 to 0.98 with steps of 0.02, trying to observe in detail the behavior of
each heuristic in this range, and specifically over the phase transition (the region
where the most difficult instances can be found). Figure 2 shows the first three
series of experiments. In Figures 2 ((a) and (c)) the value for p1 is 0.75 and 1,
respectively.

The parameter step is set to 1. It can be observed that for all values of p1, the
GA approach shows slightly better results than the other single heuristics. It is
also shown that there is an improvement from the approach when the instances
have higher constraint density, for example, when p1=1, it is clear that the FC-
GA combination achieves better results (see Figure 2 (c)). Parameter step was
intended to allow the FC-GA combination to select more than one variable to
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(a) p1 = 0.75, step = 1
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(b) p1 = 0.75, step = 2
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(c) p1 = 1.0, step = 1
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(d) p1 = 1.0, step = 2

Figure 3. Results on problems 〈20, 10〉 with uniform p2.

instantiate at each invocation. When we set step = 2 results can be observed
in Figure 2 ((b) and (d)). We found for these cases and even when step had a
higher value, single heuristics outperform our strategy.

The connection we deduced from these results is that indeed assigning a value
to the most-left variable produces changes in the domains of the uninstantiated
variables including that one selected by the parameter step. Consequently, those
changes affect the domains of this variable, and so its selection is no longer the
best one.

We now present results for instances with 20 variables. In this case, 20 dif-
ferent instances were randomly generated and tested with the FC algorithm and
for each different value of p2. The average number of consistency checks is re-
ported in the figures. For the GA, the figures report the average of the average
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of ten runs for each instance, the same way as in the previous experiment. p2

is increased by steps of 0.02. For these results, we concentrate in the range of
values for p2 between 0.22 and 0.34, where the phase transition appears. See
Figure 3. It is clear in Figures (a) and (c) that the GA performs fewer number
of constraint checks when step=1. Again, the GA shows better performance for
highly constrained problems (p1 = 0.75 and p1 = 1). However, it is also true
that as we increase the value in step to 2 (see Figure 3 (b) and (d)), the the
advantage of the GA with respect to the other heuristics is less evident. In fact,
we ran experiments for greater values of step (up to 5), but the best performance
was found when step=1.

Problem instances with non-uniform p2

In this set of experiments, the probability for inconsistent values between con-
strained pairs of variables (p2) is not uniform. Because of this non-uniformity, a
given variable may have more information, in addition to its available domain
and degree, to be considered when selecting variables for instantiation. Heuris-
tics Rho and Kappa, as well as our approach, exploit this situation. It is not the
case with heuristic Bz, so that it is expected to produce different behavior in the
results for the various heuristics.

For these experiments, instances have 20 variables, domain size of 10, and
other additional particular features were considered. Specifically, for 15% of the
constraints in an instance, parameter p2 was set to 0.8, while for the remaining
85% of constraints, the same parameter has a value of 0.2. Now, what is inter-
esting to observe is the behavior of the heuristics when the constraint density
is varied (p1). This parameter varies from 0.2 through 1 with steps of 0.02. For
each value of p1, 20 random instances were generated, each one was run 10 times,
and the average number of consistency checks was computed.

Figure 4 (a) shows results when comparing all heuristics and the GA ap-
proach with step=1. As expected, the performance of heuristic Bz is very poor
with respect to the other heuristics. The GA clearly beats all other heuristics
for a wide range of values for p1, including in those regions where the FC algo-
rithm has its largest computational effort in combination with any heuristic. It
is always possible, however, that by using either Kappa or Rho, a better result
can be obtained for a particular instance, but let us recall that the result re-
ported here in the GA case, is an average over a set of instances for each value
of p1. When observing results on experiments for step=2, Kappa, in general,
has better performance than Rho and the GA. Nevertheless, the GA presents
a reasonable performance over these instances, caused by the inclusion of the
constraint density in the fitness function.

In order to support our study, statistical tests were run to validate the re-
sults. Despite of this, one may wonder about the overall performance of our
strategy given that the computational cost of the GA is naturally higher given
his population-based approach. It is then interesting to explore the trade-off
between the gain in the number of constraint checks produced by the FC algo-
rithm against the computational cost by any of the heuristics used including our
approach. Results confirm the outcome on the previous experimentation. For
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(a) non-uniform p2, step = 1

Figure 4. Results on problems 〈20, 10〉 with non-uniform p2.

instance for less dense graphs with p1 = 0.5 the best heuristic is Bz, and the
GA has to work 140% more. But for dense graphs with p1 = 1 the GA clearly
generates better results on the number of constraint checks, with an additional
cost of only 34% with respect to the effort taken by the Kappa heuristic. We
think that with additional refinement of the FC-GA combination this percent-
age can be reduced, but this work is contemplated in future extensions of this
investigation.

4 Conclusions

This article has proposed an innovative approach for using a GA to generate a
dynamic variable ordering when solving CSPs. Using this scheme, under certain
configuration of the GA, results are efficient, in terms of consistency checks.
After testing for different values of parameter step (the number of variables to
be instantiated before calling the GA again), it was found that best performance
is shown when step=1. By establishing step=1, the fitness function in the GA
could be seen as a deterministic heuristic that can be used to evaluate each of the
uninstantiated variables and select that variable which maximizes the measure.
This can be used as a single heuristic without considering the GA and probably
would obtain as good results or better than those provided by the GA.

The FC-GA combination shows in general better results than the other
heuristics, especially for highly constrained problems. It was also observed that
when the probability p2 is not uniform, the GA has a very competitive perfor-
mance, achieving in some cases much better results than the other heuristics. The
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success of the GA in these cases is that the fitness function takes into account
the degree of a variable.
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